(ENEM 2009 2ªAPLICAÇÃO) Muitas indústrias têm procurado modificar as embalagens de seus produtos de forma a economizar material, mas mantendo o mesmo volume. Considere que se tenha uma folha de papelão quadrada e se deseje encontrar a melhor altura (h) para fazer uma caixa sem tampa, cortando-se os quatro cantos da folha. As exigências são que as dimensões da caixa sejam números inteiros e que o volume seja o maior possível. No modelo apresentado na figura seguinte, a folha tem 12 cm de lado e, nesse caso, a caixa de maior volume terá altura 2 cm. Para encontrar esse número, é calculado o volume em função da altura e prossegue-se atribuindo valores a h e calculando o volume, enquanto o valor do volume aumentar.
Se a folha quadrada tiver 20 cm de lado, qual deve ser a medida do lado do quadrado a ser cortado em cada um dos cantos, de modo a obter uma caixa sem tampa cujas dimensões sejam números inteiros e cujo volume seja o maior possível?